2,099 research outputs found

    Magnetoasymmetric transport in a mesoscopic interferometer: From the weak to the strong coupling regime

    Get PDF
    The microreversibility principle implies that the conductance of a two-terminal Aharonov-Bohm interferometer is an even function of the applied magnetic flux. Away from linear response, however, this symmetry is not fulfilled and the conductance phase of the interferometer when a quantum dot is inserted in one of its arms can be a continuous function of the bias voltage. Such magnetoasymmetries have been investigated in related mesoscopic systems and arise as a consequence of the asymetric response of the internal potential of the conductor out of equilibrium. Here we discuss magnetoasymmetries in quantum-dot Aharonov-Bohm interferometers when strong electron-electron interactions are taken into account beyond the mean-field approach. We find that at very low temperatures the asymmetric element of the differential conductance shows an abrupt change for voltages around the Fermi level. At higher temperatures we recover a smooth variation of the magnetoasymmetry as a function of the bias. We illustrate our results with the aid of the electron occupation at the dot, demonstrating that its nonequilibrium component is an asymmetric function of the flux even to lowest order in voltage. We also calculate the magnetoasymmetry of the current-current correlations (the noise) and find that it is given, to a good extent, by the magnetoasymmetry of the weakly nonlinear conductance term. Therefore, both magnetoasymmetries (noise and conductance) are related to each other via a higher-order fluctuation-dissipation relation. This result appears to be true even in the low temperature regime, where Kondo physics and many-body effects dominate the transport properties.Comment: 17 pages, 9 figure

    Critical currents for vortex defect motion in superconducting arrays

    Full text link
    We study numerically the motion of vortices in two-dimensional arrays of resistively shunted Josephson junctions. An extra vortex is created in the ground states by introducing novel boundary conditions and made mobile by applying external currents. We then measure critical currents and the corresponding pinning energy barriers to vortex motion, which in the unfrustrated case agree well with previous theoretical and experimental findings. In the fully frustrated case our results also give good agreement with experimental ones, in sharp contrast with the existing theoretical prediction. A physical explanation is provided in relation with the vortex motion observed in simulations.Comment: To appear in Physical Review

    Defect Motion and Lattice Pinning Barrier in Josephson-Junction Ladders

    Full text link
    We study motion of domain wall defects in a fully frustrated Josephson-unction ladder system, driven by small applied currents. For small system sizes, the energy barrier E_B to the defect motion is computed analytically via symmetry and topological considerations. More generally, we perform numerical simulations directly on the equations of motion, based on the resistively-shunted junction model, to study the dynamics of defects, varying the system size. Coherent motion of domain walls is observed for large system sizes. In the thermodynamical limit, we find E_B=0.1827 in units of the Josephson coupling energy.Comment: 7 pages, and to apear in Phys. Rev.

    Ru-Catalyzed, cis-Selective Living Ring-Opening Metathesis Polymerization of Various Monomers, Including a Dendronized Macromonomer, and Implications to Enhanced Shear Stability

    Get PDF
    An unsaturated polymer’s cis/trans-olefin content has a significant influence on its properties. For polymers obtained by ring-opening metathesis polymerization (ROMP), the cis/trans-olefin content can be tuned by using specific catalysts. However, cis-selective ROMP has suffered from narrow monomer scope and lack of control over the polymerization (giving polymers with broad molecular weight distributions and prohibiting the synthesis of block copolymers). Herein, we report the versatile cis-selective controlled living ROMP of various endo-tricyclo[4.2.2.0^(2,5)]deca-3,9-diene and various norbornene derivatives using a fast-initiating dithiolate-chelated Ru catalyst. Polymers with cis-olefin content as high as 99% could be obtained with high molecular weight (up to M_n of 105.1 kDa) and narrow dispersity (<1.4). The living nature of the polymerization was also exploited to prepare block copolymers with high cis-olefin content for the first time. Furthermore, owing to the successful control over the stereochemistry and narrow dispersity, we could compare cis- and trans-rich polynorbornene and found the former to have enhanced resistance to shear degradation

    Human CD57(+ )germinal center-T cells are the major helpers for GC-B cells and induce class switch recombination

    Get PDF
    BACKGROUND: The function of CD57(+ )CD4(+ )T cells, constituting a major subset of germinal center T (GC-Th) cells in human lymphoid tissues, has been unclear. There have been contradictory reports regarding the B cell helping function of CD57(+ )GC-Th cells in production of immunoglobulin (Ig). Furthermore, the cytokine and co-stimulation requirement for their helper activity remains largely unknown. To clarify and gain more insight into their function in helping B cells, we systematically investigated the capacity of human tonsil CD57(+ )GC-Th cells in inducing B cell Ig synthesis. RESULTS: We demonstrated that CD57(+ )GC-Th cells are highly efficient in helping B cell production of all four subsets of Ig (IgM, IgG, IgA and IgE) compared to other T-helper cells located in germinal centers or interfollicular areas. CD57(+ )GC-Th cells were particularly more efficient than other T cells in helping GC-B cells but not naïve B cells. CD57(+ )GC-Th cells induced the expression of activation-induced cytosine deaminase (AID) and class switch recombination in developing B cells. IgG1-3 and IgA1 were the major Ig isotypes induced by CD57(+ )GC-Th cells. CD40L, but not IL-4, IL-10 and IFN-γ, was critical in CD57(+ )GC-Th cell-driven B cell production of Ig. However, IL-10, when added exogenously, significantly enhanced the helper activity of CD57(+ )GC-Th cells, while TGF-β1 completely and IFN-γ partially suppressed the CD57(+ )GC-Th cell-driven Ig production. CONCLUSIONS: CD57(+)CD4(+ )T cells in the germinal centers of human lymphoid tissues are the major T helper cell subset for GC-B cells in Ig synthesis. Their helper activity is consistent with their capacity to induce AID and class switch recombination, and can be regulated by CD40L, IL-4, IL-10 and TGF-β

    Relative Yields and Nutritive Value of Whole Crop Rice Harvested on Four Successive Dates for Forage in Korea

    Get PDF
    About four million tons of forages are fed to ruminants in Korea, but half of them rely on rice straw as roughage and 0.6 million tons of forage was imported. The lack of forage results in increased imports of concentrate feeds and increased production cost. Now, Korea has about 1.1 million ha of rice fields, but as a consequence of world trade negotiation, Korea will open the rice market from next year. It is expected that due to aging farmers and lower rice price, about 0.2 million ha of paddy field will not be cultivated for grain rice. Therefore, we suggest that whole-crop rice cultivation for feeding beef and dairy cattle. The purpose of this study was to investigate relative yield and nutritive value of whole-crop rice grown in paddy fields in Korea

    Deep learning computer-aided detection system for pneumonia in febrile neutropenia patients: a diagnostic cohort study

    Get PDF
    Abstract Background Diagnosis of pneumonia is critical in managing patients with febrile neutropenia (FN), however, chest X-ray (CXR) has limited performance in the detection of pneumonia. We aimed to evaluate the performance of a deep learning-based computer-aided detection (CAD) system in pneumonia detection in the CXRs of consecutive FN patients and investigated whether CAD could improve radiologists diagnostic performance when used as a second reader. Methods CXRs of patients with FN (a body temperature ≥ 38.3°C, or a sustained body temperature ≥ 38.0°C for an hour; absolute neutrophil count < 500/mm3) obtained between January and December 2017 were consecutively included, from a single tertiary referral hospital. Reference standards for the diagnosis of pneumonia were defined by consensus of two thoracic radiologists after reviewing medical records and CXRs. A commercialized, deep learning-based CAD system was retrospectively applied to detect pulmonary infiltrates on CXRs. For comparing performance, five radiologists independently interpreted CXRs initially without the CAD results (radiologist-alone interpretation), followed by the interpretation with CAD. The sensitivities and specificities for detection of pneumonia were compared between radiologist-alone interpretation and interpretation with CAD. The standalone performance of the CAD was also evaluated, using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Moreover, sensitivity and specificity of standalone CAD were compared with those of radiologist-alone interpretation. Results Among 525 CXRs from 413 patients (52.3% men; median age 59years), pneumonia was diagnosed in 128 (24.4%) CXRs. In the interpretation with CAD, average sensitivity of radiologists was significantly improved (75.4% to 79.4%, P = 0.003) while their specificity remained similar (75.4% to 76.8%, P = 0.101), compared to radiologist-alone interpretation. The CAD exhibited AUC, sensitivity, and specificity of 0.895, 88.3%, and 68.3%, respectively. The standalone CAD exhibited higher sensitivity (86.6% vs. 75.2%, P < 0.001) and lower specificity (64.8% vs. 75.4%, P < 0.001) compared to radiologist-alone interpretation. Conclusions In patients with FN, the deep learning-based CAD system exhibited radiologist-level performance in detecting pneumonia on CXRs and enhanced radiologists performance

    The mid-infrared view of red sequence galaxies in Abell 2218 with <i>AKARI</i>

    Get PDF
    We present the AKARI Infrared Camera (IRC) imaging observation of early-type galaxies (ETGs) in A2218 at z ~ 0.175. Mid-infrared (MIR) emission from ETGs traces circumstellar dust emission from asymptotic giant branch (AGB) stars or/and residual star formation. Including the unique imaging capability at 11 and 15 μm, our AKARI data provide an effective way to investigate MIR properties of ETGs in the cluster environment. Among our flux-limited sample of 22 red sequence ETGs with precise dynamical and line strength measurements (less than 18 mag at 3 μm), we find that at least 41% have MIR-excess emission. The N3 – S11 versus N3 (3 and 11 μm) color-magnitude relation shows the expected blue sequence, but the MIR-excess galaxies add a red wing to the relation especially at the fainter end. A spectral energy distribution analysis reveals that the dust emission from AGB stars is the most likely cause of the MIR excess, with a low level of star formation being the next possible explanation. The MIR-excess galaxies show a wide spread of N3 – S11 colors, implying a significant spread (2-11 Gyr) in the estimated mean ages of stellar populations. We study the environmental dependence of MIR-excess ETGs over an area out to a half virial radius (~1 Mpc). We find that the MIR-excess ETGs are preferentially located in the outer region. From this evidence, we suggest that the fainter, MIR-excess ETGs have just joined the red sequence, possibly due to the infall and subsequent morphological/spectral transformation induced by the cluster environment

    Living β-selective cyclopolymerization using Ru dithiolate catalysts

    Get PDF
    Cyclopolymerization (CP) of 1,6-heptadiyne derivatives is a powerful method for synthesizing conjugated polyenes containing five- or six-membered rings via α- or β-addition, respectively. Fifteen years of studies on CP have revealed that user-friendly Ru-based catalysts promoted only α-addition; however, we recently achieved β-selective regiocontrol to produce polyenes containing six-membered-rings, using a dithiolate-chelated Ru-based catalyst. Unfortunately, slow initiation and relatively low catalyst stability inevitably led to uncontrolled polymerization. Nevertheless, this investigation gave us some clues to how successful living polymerization could be achieved. Herein, we report living β-selective CP by rational engineering of the steric factor on monomer or catalyst structures. As a result, the molecular weight of the conjugated polymers from various monomers could be controlled with narrow dispersities, according to the catalyst loading. A mechanistic investigation by in situ kinetic studies using ^1H NMR spectroscopy revealed that with appropriate pyridine additives, imposing a steric demand on either the monomer or the catalyst significantly improved the stability of the propagating carbene as well as the relative rates of initiation over propagation, thereby achieving living polymerization. Furthermore, we successfully prepared diblock and even triblock copolymers with a broad monomer scope
    corecore